C Specification
Bits which can be set in the VkFormatProperties3 features
linearTilingFeatures, optimalTilingFeatures, and
bufferFeatures are:
// Provided by VK_VERSION_1_3
// Flag bits for VkFormatFeatureFlagBits2
typedef VkFlags64 VkFormatFeatureFlagBits2;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT = 0x00000001ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT = 0x00000002ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BIT = 0x00000004ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BIT = 0x00000008ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BIT = 0x00000010ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BIT = 0x00000020ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BIT = 0x00000040ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT = 0x00000080ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BIT = 0x00000100ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000200ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_SRC_BIT = 0x00000400ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_DST_BIT = 0x00000800ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BIT = 0x00001000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT = 0x00004000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT = 0x00008000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BIT = 0x00010000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT = 0x00020000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT = 0x00040000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT = 0x00080000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT = 0x00100000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT = 0x00200000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DISJOINT_BIT = 0x00400000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT = 0x00800000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT = 0x80000000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT = 0x100000000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT = 0x200000000ULL;
// Provided by VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_CUBIC_BIT = 0x00002000ULL;
// Provided by VK_VERSION_1_4
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT = 0x400000000000ULL;
// Provided by VK_KHR_video_decode_queue with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_DECODE_OUTPUT_BIT_KHR = 0x02000000ULL;
// Provided by VK_KHR_video_decode_queue with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_DECODE_DPB_BIT_KHR = 0x04000000ULL;
// Provided by VK_KHR_acceleration_structure with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHR = 0x20000000ULL;
// Provided by VK_EXT_fragment_density_map with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_FRAGMENT_DENSITY_MAP_BIT_EXT = 0x01000000ULL;
// Provided by VK_KHR_fragment_shading_rate with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR = 0x40000000ULL;
// Provided by VK_EXT_host_image_copy
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT_EXT = 0x400000000000ULL;
// Provided by VK_KHR_video_encode_queue with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_ENCODE_INPUT_BIT_KHR = 0x08000000ULL;
// Provided by VK_KHR_video_encode_queue with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_ENCODE_DPB_BIT_KHR = 0x10000000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT_KHR = 0x00000001ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT_KHR = 0x00000002ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BIT_KHR = 0x00000004ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BIT_KHR = 0x00000008ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BIT_KHR = 0x00000010ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BIT_KHR = 0x00000020ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BIT_KHR = 0x00000040ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT_KHR = 0x00000080ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BIT_KHR = 0x00000100ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BIT_KHR = 0x00000200ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_SRC_BIT_KHR = 0x00000400ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_DST_BIT_KHR = 0x00000800ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BIT_KHR = 0x00001000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT_KHR = 0x00004000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT_KHR = 0x00008000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT_KHR = 0x00020000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR = 0x00040000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KHR = 0x00080000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR = 0x00100000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT_KHR = 0x00200000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DISJOINT_BIT_KHR = 0x00400000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT_KHR = 0x00800000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT_KHR = 0x80000000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT_KHR = 0x100000000ULL;
// Provided by VK_KHR_format_feature_flags2
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT_KHR = 0x200000000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_VERSION_1_2 or VK_EXT_sampler_filter_minmax
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BIT_KHR = 0x00010000ULL;
// Provided by VK_KHR_format_feature_flags2 with VK_EXT_filter_cubic or VK_IMG_filter_cubic
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT = 0x00002000ULL;
// Provided by VK_NV_ray_tracing_linear_swept_spheres
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_ACCELERATION_STRUCTURE_RADIUS_BUFFER_BIT_NV = 0x8000000000000ULL;
// Provided by VK_NV_linear_color_attachment with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NV = 0x4000000000ULL;
// Provided by VK_QCOM_image_processing with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM = 0x400000000ULL;
// Provided by VK_QCOM_image_processing with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM = 0x800000000ULL;
// Provided by VK_QCOM_image_processing with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM = 0x1000000000ULL;
// Provided by VK_QCOM_image_processing with VK_KHR_format_feature_flags2 or VK_VERSION_1_3
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM = 0x2000000000ULL;
// Provided by VK_NV_optical_flow
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_OPTICAL_FLOW_IMAGE_BIT_NV = 0x10000000000ULL;
// Provided by VK_NV_optical_flow
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_OPTICAL_FLOW_VECTOR_BIT_NV = 0x20000000000ULL;
// Provided by VK_NV_optical_flow
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_OPTICAL_FLOW_COST_BIT_NV = 0x40000000000ULL;
// Provided by VK_KHR_video_encode_quantization_map
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_ENCODE_QUANTIZATION_DELTA_MAP_BIT_KHR = 0x2000000000000ULL;
// Provided by VK_KHR_video_encode_quantization_map
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VIDEO_ENCODE_EMPHASIS_MAP_BIT_KHR = 0x4000000000000ULL;
or the equivalent
// Provided by VK_KHR_format_feature_flags2
typedef VkFormatFeatureFlagBits2 VkFormatFeatureFlagBits2KHR;
Description
The following bits may be set in linearTilingFeatures and
optimalTilingFeatures, specifying that the features are supported by
images or image views
or sampler Y′CBCR conversion objects
created with the queried
vkGetPhysicalDeviceFormatProperties2::format:
-
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BITspecifies that an image view can be sampled from. -
VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BITspecifies that an image view can be used as a storage image. -
VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BITspecifies that an image view can be used as storage image that supports atomic operations. -
VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BITspecifies that an image view can be used as a framebuffer color attachment and as an input attachment. -
VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BITspecifies that an image view can be used as a framebuffer color attachment that supports blending. -
VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BITspecifies that an image view can be used as a framebuffer depth/stencil attachment and as an input attachment. -
VK_FORMAT_FEATURE_2_BLIT_SRC_BITspecifies that an image can be used as thesrcImagefor vkCmdBlitImage2 and vkCmdBlitImage. -
VK_FORMAT_FEATURE_2_BLIT_DST_BITspecifies that an image can be used as thedstImagefor vkCmdBlitImage2 and vkCmdBlitImage. -
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BITspecifies that ifVK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BITis also set, an image view can be used with a sampler that has either ofmagFilterorminFilterset toVK_FILTER_LINEAR, ormipmapModeset toVK_SAMPLER_MIPMAP_MODE_LINEAR. IfVK_FORMAT_FEATURE_2_BLIT_SRC_BITis also set, an image can be used as thesrcImagefor vkCmdBlitImage2 andvkCmdBlitImagewith afilterofVK_FILTER_LINEAR. This bit must only be exposed for formats that also support theVK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BITorVK_FORMAT_FEATURE_2_BLIT_SRC_BIT.If the format being queried is a depth/stencil format, this bit only specifies that the depth aspect (not the stencil aspect) of an image of this format supports linear filtering. Where depth comparison is supported it may be linear filtered whether this bit is present or not, but where this bit is not present the filtered value may be computed in an implementation-dependent manner which differs from the normal rules of linear filtering. The resulting value must be in the range [0,1] and should be proportional to, or a weighted average of, the number of comparison passes or failures.
-
VK_FORMAT_FEATURE_2_TRANSFER_SRC_BITspecifies that an image can be used as a source image for copy commands. -
VK_FORMAT_FEATURE_2_TRANSFER_DST_BITspecifies that an image can be used as a destination image for copy commands and clear commands. -
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BITspecifiesVkImagecan be used as a sampled image with a min or max VkSamplerReductionMode. This bit must only be exposed for formats that also support theVK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT. -
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_CUBIC_BITspecifies thatVkImagecan be used with a sampler that has either ofmagFilterorminFilterset toVK_FILTER_CUBIC_EXT, or be the source image for a blit withfilterset toVK_FILTER_CUBIC_EXT. This bit must only be exposed for formats that also support theVK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT. If the format being queried is a depth/stencil format, this only specifies that the depth aspect is cubic filterable. -
VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BITspecifies that an application can define a sampler Y′CBCR conversion using this format as a source, and that an image of this format can be used with a VkSamplerYcbcrConversionCreateInfoxChromaOffsetand/oryChromaOffsetofVK_CHROMA_LOCATION_MIDPOINT. Otherwise bothxChromaOffsetandyChromaOffsetmust beVK_CHROMA_LOCATION_COSITED_EVEN. If a format does not incorporate chroma downsampling (it is not a “422” or “420” format) but the implementation supports sampler Y′CBCR conversion for this format, the implementation must setVK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT. -
VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BITspecifies that an application can define a sampler Y′CBCR conversion using this format as a source, and that an image of this format can be used with a VkSamplerYcbcrConversionCreateInfoxChromaOffsetand/oryChromaOffsetofVK_CHROMA_LOCATION_COSITED_EVEN. Otherwise bothxChromaOffsetandyChromaOffsetmust beVK_CHROMA_LOCATION_MIDPOINT. If neitherVK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BITnorVK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BITis set, the application must not define a sampler Y′CBCR conversion using this format as a source. -
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BITspecifies that an application can define a sampler Y′CBCR conversion using this format as a source withchromaFilterset toVK_FILTER_LINEAR. -
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BITspecifies that the format can have different chroma, min, and mag filters. -
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BITspecifies that reconstruction is explicit, as described in https://registry.khronos.org/vulkan/specs/latest/html/vkspec.html#textures-chroma-reconstruction. If this bit is not present, reconstruction is implicit by default. -
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BITspecifies that reconstruction can be forcibly made explicit by setting VkSamplerYcbcrConversionCreateInfo::forceExplicitReconstructiontoVK_TRUE. If the format being queried supportsVK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BITit must also supportVK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT. -
VK_FORMAT_FEATURE_2_DISJOINT_BITspecifies that a multi-planar image can have theVK_IMAGE_CREATE_DISJOINT_BITset during image creation. An implementation must not setVK_FORMAT_FEATURE_2_DISJOINT_BITfor single-plane formats. -
VK_FORMAT_FEATURE_2_FRAGMENT_DENSITY_MAP_BIT_EXTspecifies that an image view can be used as a fragment density map attachment. -
VK_FORMAT_FEATURE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHRspecifies that an image view can be used as a fragment shading rate attachment. An implementation must not set this feature for formats with a numeric format other thanUINT, or set it as a buffer feature. -
VK_FORMAT_FEATURE_2_VIDEO_DECODE_OUTPUT_BIT_KHRspecifies that an image view with this format can be used as a decode output picture in video decode operations. -
VK_FORMAT_FEATURE_2_VIDEO_DECODE_DPB_BIT_KHRspecifies that an image view with this format can be used as an output reconstructed picture or an input reference picture in video decode operations. -
VK_FORMAT_FEATURE_2_VIDEO_ENCODE_INPUT_BIT_KHRspecifies that an image view with this format can be used as an encode input picture in video encode operations. -
VK_FORMAT_FEATURE_2_VIDEO_ENCODE_DPB_BIT_KHRspecifies that an image view with this format can be used as an output reconstructed picture or an input reference picture in video encode operations.NoteSpecific video profiles may have additional restrictions on the format and other image creation parameters corresponding to image views used by video coding operations that can be enumerated using the vkGetPhysicalDeviceVideoFormatPropertiesKHR command.
-
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BITspecifies that image views or buffer views created with this format can be used as storage images or storage texel buffers respectively for read operations without specifying a format. -
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BITspecifies that image views or buffer views created with this format can be used as storage images or storage texel buffers respectively for write operations without specifying a format. -
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BITspecifies that image views created with this format can be used for depth comparison performed byOpImage*Dref*instructions. -
VK_FORMAT_FEATURE_2_LINEAR_COLOR_ATTACHMENT_BIT_NVspecifies that the format is supported as a renderable Linear Color Attachment. This bit will be set for renderable color formats in thelinearTilingFeatures. This must not be set in theoptimalTilingFeaturesorbufferFeaturesmembers. -
VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOMspecifies that image views created with this format can be used as the weight image input to weight image sampling operations. -
VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOMspecifies that image views created with this format can be sampled in weight image sampling operations. -
VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOMspecifies that image views created with this format can be used in block matching operations. -
VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOMspecifies that image views created with this format can be sampled in box filter sampling operations. -
VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BITspecifies that an image can be created withVK_IMAGE_USAGE_HOST_TRANSFER_BIT. -
VK_FORMAT_FEATURE_2_VIDEO_ENCODE_QUANTIZATION_DELTA_MAP_BIT_KHRspecifies that an image view with this format can be used as a quantization delta map in video encode operations. -
VK_FORMAT_FEATURE_2_VIDEO_ENCODE_EMPHASIS_MAP_BIT_KHRspecifies that an image view with this format can be used as an emphasis map in video encode operations.NoteVideo encode quantization maps have additional restrictions specific to the video profile they are used with that can be enumerated using the vkGetPhysicalDeviceVideoFormatPropertiesKHR command.
The following bits may be set in bufferFeatures, specifying that the
features are supported by buffers or buffer
views created with the queried
vkGetPhysicalDeviceFormatProperties2::format:
-
VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BITspecifies that the format can be used to create a buffer view that can be bound to aVK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFERdescriptor. -
VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BITspecifies that the format can be used to create a buffer view that can be bound to aVK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFERdescriptor. -
VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BITspecifies that atomic operations are supported onVK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFERwith this format. -
VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BITspecifies that the format can be used as a vertex attribute format (VkVertexInputAttributeDescription::format). -
VK_FORMAT_FEATURE_2_ACCELERATION_STRUCTURE_VERTEX_BUFFER_BIT_KHRspecifies that the format can be used as the vertex format when creating an acceleration structure (VkAccelerationStructureGeometryTrianglesDataKHR::vertexFormat). This format can also be used as the vertex format in host memory when doing host acceleration structure builds. -
VK_FORMAT_FEATURE_2_ACCELERATION_STRUCTURE_RADIUS_BUFFER_BIT_NVspecifies that the format can be used as the radius format when creating an acceleration structure (VkAccelerationStructureGeometryLinearSweptSpheresDataNV::radiusFormatorVkAccelerationStructureGeometrySpheresDataNV::radiusFormat). This format can also be used as the radius format in host memory when doing host acceleration structure builds. -
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BITspecifies that buffer views created with this format can be used as storage texel buffers for read operations without specifying a format. -
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BITspecifies that buffer views created with this format can be used as storage texel buffers for write operations without specifying a format. -
VK_FORMAT_FEATURE_2_OPTICAL_FLOW_IMAGE_BIT_NVspecifies that an image view with this format can be used as an input or reference to optical flow operations -
VK_FORMAT_FEATURE_2_OPTICAL_FLOW_VECTOR_BIT_NVspecifies that an image view with this format can be used as a flow vector map (either as hint, output or global flow) for optical flow operations -
VK_FORMAT_FEATURE_2_OPTICAL_FLOW_COST_BIT_NVspecifies that an image view with this format can be used as an output cost map for optical flow operations
Document Notes
For more information, see the Vulkan Specification
This page is extracted from the Vulkan Specification. Fixes and changes should be made to the Specification, not directly.